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Abstract

Word and language operations on trajectories provide a general framework for the study of proper-
ties of sequential insertion and deletion operationsafectory gives a syntactical constraint on the
scattered insertion (deletion) of a word into(from) another one, with an intuitive geometrical interpre-
tation. Moreover, deletion on trajectories is an inverse of the shuffle on trajectories. These operations
are a natural generalization of many binary word operations like catenation, quotient, insertion, dele-
tion, shuffle, etc. Besides they were shown to be useful, e.g. in concurrent processes modelling and
recently in biocomputing area.

We begin with the study of algebraic properties of the deletion on trajectories. Then we focus on
three standard decision problems concerning linear language equations with one variable, involving
the above mentioned operations. We generalize previous results and obtain a sequence of new ones.
Particularly, we characterize the class of binary word operations for which the validity of such a
language equation is (un)decidable, for regular and context-free operands.
© 2004 Elsevier B.V. All rights reserved.

1. Introduction

Thebinary word operationswhose simplest examples are catenation and left/right quo-
tient, have been extensively studied in the formal language theory. They are important
for composition/decomposition of languages and their descriptions (grammars, automata).
They are also of key importance for forming algebraic structures of formal languages, as
the abstract families of languages (AHLY].
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Among the basic topics connected with them, besides their closure properties, we account
language(in)equationsinvolving these operations, see €20,14] Various related prob-
lems have been studied during the last two decades, s¢B-€/§).The scope of the studied
sequential insertion/deletion operations include insertion, shuffle, literal shuffle, deletion,
bipolar deletion, scattered deletion, as well as their iterated and regulated versions. Recently,
the applications of such language equations were shown in the coding theory for modelling
noisy channelf8] or in the biocomputing research for characterization of sets of codewords
for DNA computing[9,10].

Many of the mentioned insertion/deletion operations share the same principle, while they
differ in positions where the letters of one argument are inserted/deleted into/from another
one. Then one can characterize all these positions by a set of binary strings called the
trajectories Trajectories were introduced[ib8] for a class ofnsertionoperations, and their
closure properties, algebraic properties and applications to concurrent processes modelling
were studied. Further related problems were addressed, €l§-ih7] The key concept of
shuffle on trajectoriemvolves many common word operations as its special cases, hence it
allows to produce general results valid for the whole class of operations. Its importance and
utility became more obvious in 2003 when the inverse operatiomnlgletion on trajectories
was independently introduced[ib, 13]. Several new results have been obtained since these
two reports, some rather theoreti¢2+4], some involving application®-11]

The paper is organized as follows. In Sectmve fix some elementary notation of
formal language theory. In Secti@we recall definitions fronj1,13,18] introducing the
operations on trajectories. We give their characterization and some closure properties in
Section4. In Section5 we study certain algebraic properties of deletion on trajectories,
which differ substantially from the insertion case.

The key Sectiorb deals with linear language equations of the faka®>Ly, = R, &
being an insertion or deletion operation. Particularly we focus on the problem whether
L1<$ Lz = R holds or not, given the languagés, L2, R, Rare regular. The problem can
be easily shown to be decidable for all the studied operations Wheiy are regular. More
interesting is the case when onelgf, L, is context-free. We give an exact characterization
of the class of sets of trajectories (and hence the class of binary word operations) for which
this problem is decidable and for which it is not. This characterization generalizes several
previous studies, s¢b—7], and brings also some new results as its special cases.

2. Definitions and preliminaries

An alphabetis a finite and nonempty set of symbols. In the sequel we shall use a fixed
alphabetr. X is assumed to be non-singleton, if not stated otherwise. The set of all words
(over2) is denoted byz*. This set includes thempty wordl. The length of a wordv is
denoted byw|. |w|, denotes the number of non-overlapping occurrenceswvaithin w,
for w € 2*, x € XT. For a nonnegative integarand a wordy, we usew” to denote the
concatenated copies of

A mappingo: X* — 22" is called dfinite substitutiorof Z* if a(uv) = a(u)a(v) for all
u,v € 2%, anda(a) is finite for alla € 2. Moreover, if|a(a)| = 1 for alla € X, thena is
called amorphismof X*.
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A languagel is a set of words, or equivalently a subsetXsf. If n is a nonnegative
integer, we writeL” for the language consisting of all words of the fomm - - - w,, such
that eachw; is in L. We also writeL* for the languagé.’ U LY U L2 U .- andL for the
languagel.* — {1}. The notation. represents the complement of the langulagthat is,

L¢ = 2* — L. For the classes of regular, context-free, and context sensitive languages, we
use the notations REG, CF and CS, respectively.

A finite transducer(in standard form) is a sextuple = (S, %, 2’, so, F, P) such that
Sis the finite and nonempty set of stateg,is the start state is the set of final states,
and the seP consists of productions of the formx — yr wheres andt are states ir§,

x € XU {l}andy € X" U {J}. If xis nonempty for every production then the transducer
is called a generalized sequential machine (gsm).rélad¢ion realized by the transducer

is denoted byR (T). We refer the reader §d.9] for further details on automata and formal
languages.

A binary word operatioris a mapping®: 2* x 2* — 22" where 2" is the set of all
subsets o™*. For any languageX andY over 2, we define

XOY = U udv. 1)

ueX,veY

The word operatiory’ defined byu<’'v = v<u is calledreversed>. For many examples
of common binary word operations we refer the read§616,14,18] and also to the next
section. Here we recall only two of them.
Shuffle (or scattered insertion)i LU v = {u1vy - - - ugvptps1 | K > 1,

U=up- Uplj+1, V = V1 -V}
Scattered deletionu~»v = {u1 - - - ugugy1 | k>1, u = ugv1 -« - UupvEUg41, ¥ = V1 - - - Vg

3. Shuffle and deletion on trajectories

The shuffle on trajectories was introduced 18] as a concept generalizing the above
insertion word operationgrajectoryis essentially a syntactical condition specifying how
two wordse and  are merged together into a resulting word. Formally, a trajectory is a
string over therajectory alphabetV = {0, 1}. The following definition and the example
are due td18]. Let 2 be an alphabet and lebe a trajectory; € V*. Leta, ff be two words
overX.

Definition 3.1. The shuffle ofx with 5 on the trajectory, denoted byx Ly, f3, is defined
as follows:

aly f={oafy...ufila=01...0, f=Pq... 0 t =011 . O*1/k, where

|0t | = i @and|B,,| = jm forallm, 1<m<k}.

Observe that inx Ly, 8, the positions of O’s irt correspond to letters af, while 1's
correspond to letters ¢f.
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Ol a as as ay as ag az ag A T

Fig. 1. Geometric representation of the shuffle on trajectories. The figure reprinte@®pmith permission of
the authors.

Example 3.2. Let « andf§ be the wordsc = aiasz . ..as, f = b1b2 ... bs and assume that
¢ = 03120210101. The shuffle of and on the trajectory is

oLl f = {arazazbibrasasasbzarbaaghs}.

The shuffle operation has a natural two-dimensional geometric representation. The tra-
jectory t defines a line starting in the origin and continuing one unit to the right or up,
depending on the symbols in The symbol O stands for théght direction and 1 stands
for theup direction, sed-ig. 1 The thinner line corresponds to the above trajectotiie
bolder one to another trajectory= 10°1301C%.

Trajectory conditions can be applied also in Huattered deletioicase. The following
definition has been introduced independently in the refjbris].

Definition 3.3. The deletion off from « on trajectont is the following binary word oper-
ation:
s f=fog...on|oe=o1fy... 0P B=Pqy...0 t =011 Ok, where
logu| = iy @and|p,,| = jm forall m, 1<m<k}.

It follows from the above definition that ifx| # |7 or |B| # |t|1, thenoa~f = @.
Observe that L, f = y iff y~f = a.

A set of trajectorieds any setl’ C V*. We extend the operations!,, ~+; to sets of
trajectories as follows:

ol f= U alll B, oa~rf= U o~ B 2

teT teT

whereo, f € 2* andT C V*. For extension to languages principlg folds.
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Example 3.4. The following binary word insertion and deletion operations are special cases

of shuffle and deletion on trajectories:

1. LetT = 0*1%, thenLur = -, the catenation operation, ardy = —q, the right
quotient. ForT' = 1*0*, one gets~7 = —q, the left quotient.

2. LetT = 0*1*0*, thenLuy = <—, the insertion, and~y = —, the deletion. For
T = 1*0*1*, ~=7 = =, the dipolar deletion.

3. LetT = {0, 1}*, then~~y = LU, the shuffle, and~;y = ~-, the scattered deletion.

4, LetT = (0)*(0*U1*), then~y = L, the literal shuffle, aneb7 = ~-, the literal
deletion.

5. LetT = (01)*, then~~7 = LLly, the balanced literal shuffle, and; = ~vp, the
balanced literal deletion.

4. Closure and characterization results

We recall first that the operations of shuffle and deletion on trajectories are mutual
left inversions. Segl,13]for definitions of inversion operations and for further details.

Similarly as with shuffle on trajectories [&8], we can represent the deletion on trajec-
tories via simpler language operations. The following two theorems give examples of such
characterizations. Another characterization was givdf]in

Theorem 4.1. For all languagesL1 and Ly, L1, L, € X*, and for all sets of trajectories
T C V*, there exists a gsm M and a letter-to-letter morphism h such that

Li~7Lo = (M(L1T)~h(Lp)) N X*. 3)

Proof. Let 21 = {a1|a € X} be a copy o2 such that*, X1 andV are pairwise disjoint

alphabets. Let furthe¥ : ¥ — X1 be a morphism such tha{a) = a1, a € X. Consider
finally the gsmM = (Q, 2', 4, qo, 0, F), whereQ = {qo,q1,q2}, 2’ = 2 UZ1 UV,
A=2U2X,, F ={qgo}and

5(510, 1) = (Ql, )")a 5(90, 0) = (‘]2’ /1)7
(g1, @) = (qo, a1),  6(q2,a) = (qo, a)

foralla € 2.

The gsmM accepts only the words frofi Ly L1, all other words fromL4 LLIT are
rejected. Let LLp) x, x € L1,t € T be an accepted word, théhrewrites all its substrings
la to a1, and all its substringsd0to a. Hence within the resulf = M (¢ LLIp x), the letters
from X1 are exactly those that should be deleted froma ~~; (we call them “marked for
deletion”).

Now, words fromh(L2) can be deleted from via the operatiorv~~h(L>2). Due to the
intersection withX, the results contributes to the right-hand side3)iff the deleted letters
were all those marked for deletion, and hence the result is equabia for somez € L.
We can conclude tha8) holds. U
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Theorem 4.2. For all languaged.; andLy, L1, L, € 2*, and for all sets T of trajectories
there exists a regular set R and morphisimsh, and i3 such that

Li~7L2 = ha((L1Wha(T)) N R)~ha(L2)) N 2" 4)
Proof. Consider the following morphisms:

hy:V — V* whereh1(0) =0, h1(1) = 11,
ho: 2 — (ZUV)*, wherehy(a) = 1al,a € X,
h3: (ZUV) — (XU V)* wherehz(a) =a,a € X, hz(1) = 1,h3(0) = 4.

LetfurtherR = (02 U1X1)*. The principle of the construction is similar to that of Theorem
4.1and is left to the reader. (O

The following closure properties of shuffle on trajectories are known to A&

Lemma 4.3. Let T be a set of trajectorie3 he following assertions are equivalent
(). Forall regular languaged.1, Ly, L1 LLiT Ly is a regular language
(ii). Tis aregular language

A similar result for the deletion case was independently showh, i8],

Lemma 4.4. Forallregularlanguaged.1, L2, and aregular set of trajectori€B, L1~>7 L2
is a regular language

Interestingly enough, the statement analogous to LetBdoes not hold for the deletion
on trajectories, as there are non-regular sets of trajectbsesh thatL1~~7 L2 is regular
for all regular languagek;, L». Details of this problem are studied[it]. We also refer to
[1,13,18]for further closure properties of insertion and deletion on trajectories.

5. Algebraic properties

Various algebraic properties as completeness and determinism of sets of trajectories,
commutativity, associativity and distributivity have been studied for shuffle of trajectories
[18]. Here we give an analogous study for the case of deletion on trajectories.

Definition 5.1. A set of trajectorie§ is calleddeterministiciff card(e Loy f) <1, for all
o, fe 2.

Theorem 5.2. If a set of trajectories T is deterministithencard o~~7 ) <1,forall o, f €
2*, but not conversely

Proof. (i) Assume that car@~-7 f§) > 2 for somex, € 2*. Then there arg, 2 € T such
thatry # 1o, |f1lo0 = |f2l0 and 1|1 = |f2]1. ConsiderX = {a, b} and letg : V* — 2*
be a morphism defined by(0) = « and g(1) = b. Denotei = |f1lo, j = If1]1.
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Then{g(r1), g(t2)} € a' Ly b/. As g is a bijection,g(r1) # g(t2) and henceT is not
deterministic.

(i) Let T = {01, 10}. On the one handr is not deterministic ag LLb = {ab, ba}.
Suppose, on the other hand, that care r ff) > 2 for somex, § € 2*. Thenfs € X, hence
o = pp anda~7f = {p}, a contradiction. [J

If we considerdistributivity of ~»7 over union then the reader can easily check that it
holds true both on the left-hand and on the right-hand side.

The situation is different considerincommutativityand associativity.Intuitively, for
all but very special sets of trajectori€s the operation~7 is neither commutative nor
associative, due to asymmetrical role of its arguments. All the deletion operations mentioned
in Section and3 fall into this category.

Theorem 5.3. For a set of trajectoried’, the following two assertions are equivalent
(i) T <{n*
(i) ~-»7 Is a commutative operatione. L1~+7 Ly = Lo~ L1 forall Ly, Lo C X*.

Proof. (i) Let T C {1}* be a set of trajectories, then

(A} if1®l e T for somew € L1 N Lo,

Livrle = { @ otherwise

for any language& 1, Lo, and hence~7 is commutative.
(i) Letthere be € T suchthatr|g > 0. Then for the languagés, = {a!"1}, L, = {a!l1}
we haveLi~7 Ly = {a!'l0}, Lo~y L1 = ) and~»7 is not commutative. [

Corollary 5.4. ~~7 is a commutative operation iffLy~~7 Lo C {4} for all languages
L1, Ly e 2*,

Theorem 5.5. For a set of trajectoried’, the following two assertions are equivalent
() Forallry € (™10, o € (' w0), 3 € (V0™ i, j,m,n € N,
m > 0andt1 € Timpliestp ¢ T, (a)
m > Qandt1 € T impliestz ¢ T, (b)
t1 € Tand Q" € T implies0" € T, (C)
t1 € Tand 0" € T implies0" € T. (d)
(iiy ~~7 is an associative operatiome. (Ly~7L2)~>7L3 = Li~7(Lo~7L3) for all
Ly, Ly, L3 C 2%,

Proof. (i) Consider languages, Lo, L3 € 2™* and a set of trajectoriéssatisfying (i). Let
y € ((L1~7L2)~7L3), then there are;,t» € T, x1 € L1, x2 € L2 andx3 € L3 such
that (xy~,x2)~1,x3 = {y}.

Let » € (1" L0 for somem,n>0, thent; € (1¥LL0™t") for somek>0. We
can deduce thatz = 0 and hence alsez = 4, because fomm > 0,17 € T would
imply 1 ¢ T due to (b), a contradiction. Ag € (1¥ LLI0") andr, = 07, due to (d) also
0 € T and it follows that{y} = (X1~ X2) =1, X3 = X1~vop X2 = X1~y (X2~ qex3) C
Ly~ (La~>7L3).
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We have shown thatLi~~7Lo)~7L3z € Li~7(L2~7L3). Using analogous argu-
ments for (a) and (c) we can show also tat~7(Lo~7L3) € (Li~>7L2)~7L3)
which together assures the associativity-of .

(i) We show that violation of any of the conditions (a)—(d) would m@ken-associative.
(a) Letthere bey, 1 € T, 11 € (I"1LL0Y), 1, € (1" LL0), for somem > 0, n, i >0.

Consider the wordv € {a, b}*, such thaty = ¢(r1), where¢(0) = a, ¢(1) = b. Then

an+i +

g (Yo h™) = @y (o B™) = {a')

and

(a”+iny)wam — Q)WTbm — Qj,
asy contains at least orle Hence-7 is not associative for the languageg ™'}, {y}
and{b"}.

(b) The proof is analogous to (a) and is left to the reader.

(c) Lettherebey € T, 11 € (1" 110%), and let further@ e Tand @ ¢ T. Then

an+m(WTamM_)T/1) :a”_Hnw

(an+in

n(@"~~onl) = {a"},
~srad™) A =a el =0,

and hence~r is non-associative.
(d) Analogous to (c).
O

Corollary 5.6. If ~»7 is associativethen (Ly~>7L2)~rL3z = § = Li~7(La~7L3)
forall L1, Lo C X*, Ly C X+,

Proof. As it is shown in the proof of Theorerd.5, part (i), if ~7 is associative and
(x1~>7x2)~T1x3 # ¥ for somex1, x2, x3 € 2*, thenxz = 1. Hence(x1~rx2)~7x3 =0
for all x1, x> € X*, x3 € 2T, and thus als@Lq~>7L2)~>7L3 = @ forall L1, L» € X*,
L3 C >t.

Furthermore, if~»7 is associative and.y~7 (Lo~ L3) # ¢ for someLq, L, € X¥,
L3 C X7, then(Li~7L)~7L3 # Li~71(La~7L3), acontradiction, Since.1~+7 L2)
~»1 L3 = as we have just shown. ]

6. Decision problems

In this section we study three elementary types of decision problems for language equa-
tions involving the shuffle and deletion on trajectories. They are formulated generally for
an arbitrary binary language operatiorin accordance witfg].
Qo : For given languagek1, Lo, R, Rregular, isL1<>L> = R?
Q1 : For given languagek;, R, Rregular, does there exisis C X* such thalX<>L, = R?

Q- : For given languagebks, R, Rregular, does there exisss C 2* such thatL;>X = R?
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The variant of problen®, for a singleton language; = {w} is denoted byQg . Similarly,
the variants of the problem@; and Q, for a singleton languag& = {w} are denoted by
Q7 andQY, respectively.

6.1. The regular case

Letus focus onthe case whén, Lo andT are all regular first. Thehq Ly Lo, L1~~7L>
are also regular languages by Lemmétaand4.4. Hence the problem@o and Q' are
decidable. The following theorem addressing the probl@ynsQ7 and Q> show that in
this case these are also decidable. The results were independently priivé3jn

Theorem 6.1. Let L1, L2, R be regular languages and T a regular set of trajectaridse
following problems are decidahle
(i) “Does there exist a solution X to the equatibpiiiy X = R (L1~~7X = R)?"
(problemQ»);
(i) “Does there exist a solution X to the equati&niiy Ly = R (X~7L2 = R)?"
(problemQ1);
(iii) “ Does there exist a word w suchthatLir L, = R (w~7 Lz = R)?” (problemQ?’).

As a consequence, the problets, O and Q are decidable for all the binary word
operations mentioned in SectioBsand3, as they are special casesLof; or ~r. For a
majority of them, however, this was already kno[Br7].

The problem@Q% is decidable for the operationir due to the fact thak LLir y =
y LWg(ry X, whereg is a coding such thap(0) = 1 and¢(1) = 0. Hence it can be easily
reduced to the probler@¥ . In case of the operation:, however, such a reduction is not
possible and the decision status of the probtg@bhremains open.

6.2. The context-free case

Now we address the probleniy), Q1, Q2 in the case when at least one of the involved
languages is context-free (and the remaining ones are regular).

Generally, for context-free languaggs, L2, a regular languagR and a regular set of
trajectoriesT, the problemsD1, 07, Q> and Q3 are all undecidable. We refer {6,12]
where the undecidability of the mentioned problems is shown for the operations under
consideration, namely «<—, LLI, —, —>|q, —>rq, ~>. The only exception is the case of
~+ for which the problenD?’ is rather surprisingly decidabl&2]. Further details can also
be found in[3].

Consider now the problem®o and assume just one &f; or L, to be context free and
the other one regular. The former cagq gontext free) has been studied[67], where
its undecidability is shown for the six above-mentioned operations (cf. Cord@l8yyThe
latter case seems to be rather unexploited yet. In the rest of this section, we study both
these subcases of the problepg. For both of them we characterize precisely the class
of the trajectory sets (and hence the class of binary operations) for which these problems
are (un)decidable. In the following lemma, we call an integes&t N regular iff it is a
length set of a regular language.
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Lemma 6.2. Consider an arbitrary but fixed infinite regular integer 92t DenoteRp =
Ugenfo, 1}¢, aregular language over the alphabi€ 1}. Then the problerhDoesRp C L
hold tru€’ is undecidable for a context-free languabe

Proof. Denote by(/; V) = (u1, ..., uy; v1, ..., v,), n =1, an instance of post correspon-
dence problem (PCP) ové®, 1}, and letk = [log, n] + 2. Consider the languages

Ly = 1*{(im)2...(i1)20kuil...u,-m Im >0, 1<ij<nforalli;, 1<j<m},
Ly =1{(im)2. .. (110200, ... v;, |m > 0, 1<i;<nforallij, 1< j<m),

where(i ), denotes th&-digits binary representation of. Observe that each strir(g;)»

starts with 0 and contains at least one 1, so that none of them equalé @i D = Ly ULS,.

One can easily check thatis a context-free language and ti&t= Ly, N Ly, is empty iff

there is no solutiolti1, .. ., i,,) of U; V). We show thaR C L holds true iff the instance

(U; V) of PCP has no solution.

e If (U;V) has no solution, theh = X* andRp < L holds true.

e Assume thatl{; V) has a solution(iy, ..., i,) for somem >1, and denoted by =
[Gm)2. .. (il)zokuil ...uj, | the length of the shortest word if corresponding to that
solution. Then for eacl > ¢ there exists a word € L€ of the lengthd thanks to the
prefix I* of the languagd.c. Choose a numbet € D such thatd > ¢, then there is a
wordx € Rp, |x| =d, such that € L¢, hencex ¢ L andRp C L does not hold.

O

We address the variant of the problgpg when the left operand is context-free first. For
a set of trajectorie§’ € V* anda € V, denoted bW, (T) < N the Parikh image of
restricted taz,

Yo(T) ={ltla |t € T}

Considering an alphabet, denote furtherRo(T) = U, ey, 1) >4, Obviously, if T is
regular, then als®o(T) is a regular language which can be obtained fibioy a finite
substitutiong(0) = 2, ¢(1) = 4.

Theorem 6.3. Let T be an arbitrary but fixed regular set of trajectoridhe problent'Is
Lir Ly, = R” is decidable for a context-free language and regular languages o, R
if and only if Po(7) is finite

Proof. (i) Consider a regular set of trajectori@such that¥o(7) is finite. Observe that
L1y Ly = (L1NRo(T)) Lip L. As Ro(T) is an effectively constructible finite language,
the same holds fak1 N Ro(T'). Hence the language; LLir L is regular and it is decidable
whether or notL; LLI7 L2 = R holds for a regular language.

(i) Assume thatPy(7T) is infinite. ConsideZ = {0, 1} and letL € X* be an arbitrary
context-free language. Consider further the regular language

R = {0, l}* L7 ¢t = Ro(T) Lr c*
over the alphabd0, 1, ¢}. We show that
Lupc*=Riff Ro(T) C L. (5)
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(@) If Ro(T) C L, then
Ly c* = (LN Ro(T)) Lip ¢t = Ro(T) Ly c* =R.

(b) If Ro(T) € L, thenthereis a € Ro(T) such thatw ¢ L. Then the setv Ly ¢* is
nonempty and for all’ € w LUy ¢*,

w’ € Ro(T) Ly ¢® andw’ ¢ L Ly c*,

hencew’ € R — (L Wiy ¢*) andL Ly ¢* # R.
Now, if we could decide whethdr LLi7 ¢* = R holds or not, then we could due t6)@lso
decide whetheRo(T) C L holds, which contradicts Lemn@2 [

Theorem 6.4. Let T be an arbitrary but fixed regular set of trajectori@he problent'Is
Li~7Ly = R” is decidable for a context-free language and regular languageé.», R
if and only if the setPo(T) is finite.

Proof. (i) For a context-free languade and a regular languade, the languagé.1~~7 Lo
is context-free due to the closure of the cl&sunder deletion on trajectories with regular
languages, s€é,13]. Moreover, we can write

Li~7L2 = (L1~7L2) N Ro(T).

Assuming thatPo(T) is finite, the languagé 1~~7 L> is also finite and we can effectively
enumerate all its words. Hence the problemEls~7 Lo = R” is decidable.

(i) Consider a regular set of trajectori@such that?o(7) is infinite. Consider further
2 ={0, 1} and letL C X* be an arbitrary context-free language. Let

Li=LLLypc*
R = ({0, 1}* Ly c*)~spc”

be languages over the alphab@tl, c}. Observe that the definition afi7 implies that both

L1 € Ro(T) Ly ¢¥, (6)
and

{0, 1}* Wiy ¢® = Ro(T) Ly c* @)
hold. We show that

Li~7c* = Riff Ro(T) C L. (8)
(@) If Ro(T) C L, then due to) and (7),

Li~pc® = (L Wy c*)~pc® = ((L N Ro(T)) LT ¢*)~spc™
= (Ro(T) Wy ")~ = ({0, J* Lir ¢*)~7c* = R.
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(b) If Ro(T) £ L, then there is av € Ro(T) such thatw ¢ L. Then the setV =
(w LT ¢®)~7c* is nonempty and for alb’ € W,

w' € (Ro(T) Wiy c®)~7c® andw’ ¢ (L Ly ¢®)~7c®,
which can be due to7j rewritten as
w' € R — (Li~7c®),

and hencd.1~7c* # R.
Hence, as in the previous proof, decidability @éfi*~7c* = R” would imply decidability
of “Ro(T) € L” which contradicts Lemm&.2. [J

Now we address the case when the right operand is context-free. We obtain the analogous
result as in Theorer@.3for the case ofLi; operation.

Theorem 6.5. Let T be an arbitrary but fixed regular set of trajectori@he problent'Is
L1y Ly = R” is decidable for a context-free languafie and regular languageé 1, R
if and only if W1(T) = {|t|1 | t € T} is finite

Proof. Observe thatLir = I_I_I;b(T) and¥1(T) = Yo(¢p(T)), where¢p(0) = 1 and¢p(1) =
0. Hence the statement follows by Theorér@ [

For the operation~r, however, the situation is different and needs a special attention
due to the nonsymmetry of this operation. We recall one more notation of theory of formal
languages. A languadge C V* is letter-boundedf there is ann >0 andry, ..., 1, € V
suchthatl’ C 1t .. .1,

Theorem 6.6. Let T be a regular set of trajectories which is not letter boundéten the
problem*“ls L1~~7Ly = R” is undecidable for a context-free languafie and regular
languaged.1, R.

Proof. Observe first that ifT is not letter bounded, then the integer §eto1 | ¥ € T},
characterizing the numbers of occurrences of the string @1, is infinite. Denote

Rou(T) = |_J {0, 1},

teT

The reader can easily check thig; (T') is a regular language. Letbe an arbitrary context-
free language over an alphal§s 1}. Denote

L1=M(T -{c}),
Ly = (LN Roy(T)) LLIc*,
R = Li~7(Ro1(T) LLIc™),
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whereM = (Q,V Uc, {0, 1, ¢}, qo, 9, F) is a nondeterministic gsn@Q = F = {qo, g1},
and

0(q0, 0) = (q1. {A}), d(q1,0) = (g1, {c}),
0(q0. 1) = (qo. {c}), (g1, D) = (qo. {a0, b1}),
d(qo, ©) = (qo, {c}), d(q1, ) = (q1, {cc)).

One can observe that the langudges produced fronT replacing all the substrings 01 by
eithera0 or b1, and all the remaining symbols loyin eachr € 7. We show that

Li~7Ly =R iff Roy(T) S L. 9
() If Ro1(T) < L, then we have
Li~7Ly = Li~7((L N Roy(T)) Lic™) = Li~7(Ror(T) LLc™) = R.

(i) If Ror(T) £ L, thenthereis a € Ro1(T) such thatw ¢ L. Observe that then there
is a wordw’ € w LU ¢* such that after deleting’ via ~~7 from L1, the only symbols
remaining in the result ar&s, b's andc’s, and moreover’s andb’s are in the same
orderas O'sand 1's im.

In other words,w” € Li~7rw’ holds for a wordw” € ¢(w)Lic, where¢ :
{0, 1}* — {a, b}* is a codingp(0) = a, ¢(1) = b. However, asv ¢ L, there is no
x € Ly such thatw” € Li~7x would hold. Hence, we can write that

w’ e Li~~7(Ro1(T) L C*) and w” ¢ Li~>7Lo,
which can be rewritten as
w” € R — (Li~7L>),

and hencd.1~»7 L2 # R.
Now, if we could decide whethdri1~~7 L2 = R holds or not, then we could due 19) @lso
decide whetheRo1(7T) € L holds, which contradicts Lemn@a2 [

For a complementary statement, we benefit from the results gii&h.in

Theorem 6.7. Let T be a letter-bounded regular set of trajectoriést further L be a
context-free language and R a regular ofignen the languag&k~~r L is regular and
effectively constructible

Proof. By Corollary 1 in[3], if T is regular and letter bounded, then for an arbitdathe
languageR~~7 L is regular. Moreover, there is a finite number of effectively constructible
regular languageRy, ..., R, such thatR~»7 L = R; for somei, 1<i <n.

Supposing thdlt is context-free, one can construct a context-free gran@rgenerating
R~~71L,seeTheorem 3.3 and Corollary 3.%1fhand their proofs. The algorithm computing
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R~~7L can now be outlined as follows.

1. Construct the set of languagRs= {R; | L(G) C R;, 1<i<n}.

2. Choose aR € R such thatR C R; for all R; € R. Such anR must always exist as
L(G) = R, for somei, 1<i <n.

3. OutputR.
O

Combining the above two results, we can give the following answer to the open instances
of the problemQ for the operation~7 with the right argument being context-free:

Theorem 6.8. Let T be an arbitrary but fixed regular set of trajectori@he problent'ls
Li~7Ly = R” is decidable for a context-free language and regular languageé, R
if and only if T is letter-bounded

All the consequences of theorems in this section are summarized into a single table in
the following corollary. Previously unpublished results are typed in boldface.

Corollary 6.9. The following table holds true for the decision probl@w : “Is L1$Lo =
R?". The symbol D stands for a decidapl¢for an undecidable problem

Operation®>
L1 | L» <—|J_||J_|||J_lb||—>r—q>—>\:‘w«»e|->b|
q
REGREGD D DD D D D D DDD D
CFREGUU UU U U U UUuUUuU Uu
REGCFU U UU U D D DDUU U
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