
Theoretical Computer Science 332 (2005) 47–61
www.elsevier.com/locate/tcs

Aspects of shuffle and deletion on trajectories

Lila Karia, Petr Sosíka,b,∗
aDepartment of Computer Science, The University of Western Ontario, London, ON N6A 5B7, Canada

bInstitute of Computer Science, Silesian University, 74601 Opava, Czech Republic

Received 15 March 2004; received in revised form 13 September 2004; accepted 23 September 2004
Communicated by A. Salomaa

Abstract

Word and language operations on trajectories provide a general framework for the study of proper-
ties of sequential insertion and deletion operations. Atrajectorygives a syntactical constraint on the
scattered insertion (deletion) of a word into(from) another one, with an intuitive geometrical interpre-
tation. Moreover, deletion on trajectories is an inverse of the shuffle on trajectories. These operations
are a natural generalization of many binary word operations like catenation, quotient, insertion, dele-
tion, shuffle, etc. Besides they were shown to be useful, e.g. in concurrent processes modelling and
recently in biocomputing area.

We begin with the study of algebraic properties of the deletion on trajectories. Then we focus on
three standard decision problems concerning linear language equations with one variable, involving
the above mentioned operations. We generalize previous results and obtain a sequence of new ones.
Particularly, we characterize the class of binary word operations for which the validity of such a
language equation is (un)decidable, for regular and context-free operands.
© 2004 Elsevier B.V. All rights reserved.

1. Introduction

Thebinary word operations, whose simplest examples are catenation and left/right quo-
tient, have been extensively studied in the formal language theory. They are important
for composition/decomposition of languages and their descriptions (grammars, automata).
They are also of key importance for forming algebraic structures of formal languages, as
the abstract families of languages (AFL)[19].

∗ Corresponding author. Institute of Computer Science, Silesian University, 74601 Opava, Czech Republic.
E-mail addresses:lila@csd.uwo.ca(L. Kari), sosik@csd.uwo.ca, petr.sosik@fpf.slu.cz(P. Sosík).

0304-3975/$ - see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2004.09.038

http://www.elsevier.com/locate/tcs
mailto:lila@csd.uwo.ca
mailto:sosik@csd.uwo.ca
mailto:petr.sosik@fpf.slu.cz

48 L. Kari, P. Sosík / Theoretical Computer Science 332 (2005) 47–61

Among the basic topics connected with them, besides their closure properties, we account
language(in)equationsinvolving these operations, see e.g.[20,14]. Various related prob-
lems have been studied during the last two decades, see e.g.[5–7]. The scope of the studied
sequential insertion/deletion operations include insertion, shuffle, literal shuffle, deletion,
bipolar deletion, scattered deletion, as well as their iterated and regulated versions. Recently,
the applications of such language equations were shown in the coding theory for modelling
noisy channels[8] or in the biocomputing research for characterization of sets of codewords
for DNA computing[9,10].

Many of the mentioned insertion/deletion operations share the same principle, while they
differ in positions where the letters of one argument are inserted/deleted into/from another
one. Then one can characterize all these positions by a set of binary strings called the
trajectories. Trajectories were introduced in[18] for a class ofinsertionoperations, and their
closure properties, algebraic properties and applications to concurrent processes modelling
were studied. Further related problems were addressed, e.g. in[15–17]. The key concept of
shuffle on trajectoriesinvolves many common word operations as its special cases, hence it
allows to produce general results valid for the whole class of operations. Its importance and
utility became more obvious in 2003 when the inverse operation, thedeletion on trajectories
was independently introduced in[1,13]. Several new results have been obtained since these
two reports, some rather theoretical[2–4], some involving applications[9–11].

The paper is organized as follows. In Section2 we fix some elementary notation of
formal language theory. In Section3 we recall definitions from[1,13,18], introducing the
operations on trajectories. We give their characterization and some closure properties in
Section4. In Section5 we study certain algebraic properties of deletion on trajectories,
which differ substantially from the insertion case.

The key Section6 deals with linear language equations of the formL1♦L2 = R, ♦
being an insertion or deletion operation. Particularly we focus on the problem whether
L1♦L2 = R holds or not, given the languagesL1, L2, R, Rare regular. The problem can
be easily shown to be decidable for all the studied operations whenL1,L2 are regular. More
interesting is the case when one ofL1,L2 is context-free. We give an exact characterization
of the class of sets of trajectories (and hence the class of binary word operations) for which
this problem is decidable and for which it is not. This characterization generalizes several
previous studies, see[5–7], and brings also some new results as its special cases.

2. Definitions and preliminaries

An alphabetis a finite and nonempty set of symbols. In the sequel we shall use a fixed
alphabet�. � is assumed to be non-singleton, if not stated otherwise. The set of all words
(over�) is denoted by�∗. This set includes theempty word�. The length of a wordw is
denoted by|w|. |w|x denotes the number of non-overlapping occurrences ofx within w,
for w ∈ �∗, x ∈ �+. For a nonnegative integern and a wordw, we usewn to denote then
concatenated copies ofw.

A mapping� : �∗ → 2�∗ is called afinite substitutionof �∗ if �(uv) = �(u)�(v) for all
u, v ∈ �∗, and�(a) is finite for alla ∈ �. Moreover, if|�(a)| = 1 for all a ∈ �, then� is
called amorphismof �∗.

L. Kari, P. Sosík / Theoretical Computer Science 332 (2005) 47–61 49

A languageL is a set of words, or equivalently a subset of�∗. If n is a nonnegative
integer, we writeLn for the language consisting of all words of the formw1 · · ·wn such
that eachwi is in L. We also writeL∗ for the languageL0 ∪ L1 ∪ L2 ∪ · · · andL+ for the
languageL∗ − {�}. The notationLc represents the complement of the languageL, that is,
Lc = �∗ − L. For the classes of regular, context-free, and context sensitive languages, we
use the notations REG, CF and CS, respectively.

A finite transducer(in standard form) is a sextupleT = (S,�,�′, s0, F, P) such that
S is the finite and nonempty set of states,s0 is the start state,F is the set of final states,
and the setP consists of productions of the formsx → yt wheres and t are states inS,
x ∈ � ∪ {�} andy ∈ �′ ∪ {�}. If x is nonempty for every production then the transducer
is called a generalized sequential machine (gsm). Therelation realized by the transducerT
is denoted byR(T). We refer the reader to[19] for further details on automata and formal
languages.

A binary word operationis a mapping♦ : �∗ × �∗ → 2�∗ , where 2�
∗

is the set of all
subsets of�∗. For any languagesX andYover�, we define

X♦Y =
⋃

u∈X,v∈Y
u♦v. (1)

The word operation♦′ defined byu♦′v = v♦u is calledreversed♦. For many examples
of common binary word operations we refer the reader to[6,7,14,18], and also to the next
section. Here we recall only two of them.
Shuffle (or scattered insertion):u�� v = {u1v1 · · · ukvkuk+1 | k ≥ 1,

u = u1 · · · ukuk+1, v = v1 · · · vk}.
Scattered deletion:u�v = {u1 · · · ukuk+1 | k≥1, u = u1v1 · · · ukvkuk+1, v = v1 · · · vk}.

3. Shuffle and deletion on trajectories

The shuffle on trajectories was introduced in[18] as a concept generalizing the above
insertion word operations.Trajectoryis essentially a syntactical condition specifying how
two words� and� are merged together into a resulting word. Formally, a trajectory is a
string over thetrajectory alphabetV = {0,1}. The following definition and the example
are due to[18]. Let� be an alphabet and lett be a trajectory,t ∈ V ∗. Let�, � be two words
over�.

Definition 3.1. The shuffle of� with � on the trajectoryt , denoted by���t �, is defined
as follows:

���t �= {�1�1 . . . �k�k | � = �1 . . . �k, � = �1 . . .�k, t = 0i11j1 . . .0ik1jk , where

|�m| = im and|�m| = jm for all m, 1�m�k}.
Observe that in���t �, the positions of 0’s int correspond to letters of�, while 1’s

correspond to letters of�.

50 L. Kari, P. Sosík / Theoretical Computer Science 332 (2005) 47–61

Fig. 1. Geometric representation of the shuffle on trajectories. The figure reprinted from[18] with permission of
the authors.

Example 3.2. Let � and� be the words� = a1a2 . . . a8, � = b1b2 . . . b5 and assume that
t = 03120310101. The shuffle of� and� on the trajectoryt is

���t � = {a1a2a3b1b2a4a5a6b3a7b4a8b5}.

The shuffle operation has a natural two-dimensional geometric representation. The tra-
jectory t defines a line starting in the origin and continuing one unit to the right or up,
depending on the symbols int . The symbol 0 stands for theright direction and 1 stands
for theupdirection, seeFig. 1. The thinner line corresponds to the above trajectoryt , the
bolder one to another trajectoryt ′ = 105130102.

Trajectory conditions can be applied also in thescattered deletioncase. The following
definition has been introduced independently in the reports[1,13].

Definition 3.3. The deletion of� from � on trajectoryt is the following binary word oper-
ation:

��t�= {�1 . . . �k | � = �1�1 . . . �k�k, � = �1 . . .�k, t = 0i11j1 . . .0ik1jk , where

|�m| = im and|�m| = jm for all m, 1�m�k}.

It follows from the above definition that if|�| �= |t | or |�| �= |t |1, then��t� = ∅.
Observe that���t � = � iff ��t� = �.

A set of trajectoriesis any setT ⊆ V ∗. We extend the operations��t ,�t to sets of
trajectories as follows:

���T � =
⋃
t∈T

���t �, ��T � =
⋃
t∈T

��t�, (2)

where�,� ∈ �∗ andT ⊆ V ∗. For extension to languages principle (1) holds.

L. Kari, P. Sosík / Theoretical Computer Science 332 (2005) 47–61 51

Example 3.4. The following binary word insertion and deletion operations are special cases
of shuffle and deletion on trajectories:
1. Let T = 0∗1∗, then��T = ·, the catenation operation, and�T = −→rq, the right

quotient. ForT = 1∗0∗, one gets�T = −→lq, the left quotient.
2. Let T = 0∗1∗0∗, then��T = ←−, the insertion, and�T = −→, the deletion. For

T = 1∗0∗1∗,�T =�, the dipolar deletion.
3. LetT = {0,1}∗, then�T = ��, the shuffle, and�T = �, the scattered deletion.
4. LetT = (01)∗(0∗ ∪1∗), then�T = ��l , the literal shuffle, and�T = �l , the literal

deletion.
5. LetT = (01)∗, then�T = ��bl, the balanced literal shuffle, and�T = �bl, the

balanced literal deletion.

4. Closure and characterization results

We recall first that the operations of shuffle and deletion on trajectories are mutual
left inversions. See[1,13] for definitions of inversion operations and for further details.

Similarly as with shuffle on trajectories in[18], we can represent the deletion on trajec-
tories via simpler language operations. The following two theorems give examples of such
characterizations. Another characterization was given in[1].

Theorem 4.1. For all languagesL1 andL2, L1, L2 ⊆ �∗, and for all sets of trajectories
T ⊆ V ∗, there exists a gsm M and a letter-to-letter morphism h such that

L1�T L2 = (M(L1�� T)�h(L2)) ∩ �∗. (3)

Proof. Let �1 = {a1 | a ∈ �} be a copy of� such that�, �1 andV are pairwise disjoint

alphabets. Let furtherh : � −→ �1 be a morphism such thath(a) = a1, a ∈ �. Consider
finally the gsmM = (Q,�′,�, q0, �, F), whereQ = {q0, q1, q2}, �′ = � ∪ �1 ∪ V ,
� = � ∪ �1, F = {q0} and

�(q0,1) = (q1, �), �(q0,0) = (q2, �),
�(q1, a) = (q0, a1), �(q2, a) = (q0, a)

for all a ∈ �.
The gsmM accepts only the words fromT ��bl L1, all other words fromL1�� T are

rejected. Lett ��bl x, x ∈ L1, t ∈ T be an accepted word, thenM rewrites all its substrings
1a to a1, and all its substrings 0a to a. Hence within the resulty = M(t ��bl x), the letters
from �1 are exactly those that should be deleted fromx via�t (we call them “marked for
deletion”).

Now, words fromh(L2) can be deleted fromy via the operationy�h(L2). Due to the
intersection with�, the results contributes to the right-hand side of (3) iff the deleted letters
were all those marked for deletion, and hence the result is equal tox�t z for somez ∈ L2.
We can conclude that (3) holds. �

52 L. Kari, P. Sosík / Theoretical Computer Science 332 (2005) 47–61

Theorem 4.2. For all languagesL1 andL2,L1, L2 ⊆ �∗,and for all sets T of trajectories,
there exists a regular set R and morphismsh1, h2 andh3 such that

L1�T L2 = h3(((L1��h1(T)) ∩ R)�h2(L2)) ∩ �∗. (4)

Proof. Consider the following morphisms:

h1 : V −→ V ∗, whereh1(0) = 0,h1(1) = 11,
h2 : � −→ (� ∪ V)∗, whereh2(a) = 1a1, a ∈ �,
h3 : (� ∪ V) −→ (� ∪ V)∗, whereh3(a) = a, a ∈ �, h3(1) = 1,h3(0) = �.

Let furtherR = (0�∪1�1)∗. The principle of the construction is similar to that of Theorem
4.1and is left to the reader. �

The following closure properties of shuffle on trajectories are known to hold[18].

Lemma 4.3. Let T be a set of trajectories. The following assertions are equivalent:
(i). For all regular languagesL1, L2, L1��T L2 is a regular language.

(ii). T is a regular language.

A similar result for the deletion case was independently shown in[1,13].

Lemma 4.4. Forall regular languagesL1,L2,anda regular set of trajectoriesT ,L1�T L2
is a regular language.

Interestingly enough, the statement analogous to Lemma4.3does not hold for the deletion
on trajectories, as there are non-regular sets of trajectoriesT such thatL1�T L2 is regular
for all regular languagesL1, L2. Details of this problem are studied in[1]. We also refer to
[1,13,18]for further closure properties of insertion and deletion on trajectories.

5. Algebraic properties

Various algebraic properties as completeness and determinism of sets of trajectories,
commutativity, associativity and distributivity have been studied for shuffle of trajectories
[18]. Here we give an analogous study for the case of deletion on trajectories.

Definition 5.1. A set of trajectoriesT is calleddeterministiciff card(���T �)�1, for all
�,� ∈ �∗.

Theorem 5.2. If a set of trajectories T is deterministic, thencard(��T �)�1, for all �,� ∈
�∗, but not conversely.

Proof. (i) Assume that card(��T �)�2 for some�,� ∈ �∗. Then there aret1, t2 ∈ T such
that t1 �= t2, |t1|0 = |t2|0 and|t1|1 = |t2|1. Consider� = {a, b} and letg : V ∗ −→ �∗
be a morphism defined byg(0) = a and g(1) = b. Denotei = |t1|0, j = |t1|1.

L. Kari, P. Sosík / Theoretical Computer Science 332 (2005) 47–61 53

Then {g(t1), g(t2)} ⊆ ai ��T bj . As g is a bijection,g(t1) �= g(t2) and henceT is not
deterministic.

(ii) Let T = {01,10}. On the one hand,T is not deterministic asa �� b = {ab, ba}.
Suppose, on the other hand, that card(��T �)�2 for some�,� ∈ �∗. Then� ∈ �, hence
� = �� and��T � = {�}, a contradiction. �

If we considerdistributivity of�T over union, then the reader can easily check that it
holds true both on the left-hand and on the right-hand side.

The situation is different consideringcommutativityandassociativity.Intuitively, for
all but very special sets of trajectoriesT , the operation�T is neither commutative nor
associative, due to asymmetrical role of its arguments.All the deletion operations mentioned
in Sections2 and3 fall into this category.

Theorem 5.3. For a set of trajectoriesT , the following two assertions are equivalent:
(i) T ⊆ {1}∗.

(ii) �T is a commutative operation, i.e.L1�T L2 = L2�T L1 for all L1, L2 ⊆ �∗.

Proof. (i) Let T ⊆ {1}∗ be a set of trajectories, then

L1�T L2 =
{ {�} if 1|w| ∈ T for somew ∈ L1 ∩ L2,

∅ otherwise,

for any languagesL1, L2, and hence�T is commutative.
(ii) Let there bet ∈ T such that|t |0 > 0. Then for the languagesL1 = {a|t |},L2 = {a|t |1}

we haveL1�T L2 = {a|t |0}, L2�T L1 = ∅ and�T is not commutative. �

Corollary 5.4. �T is a commutative operation iffL1�T L2 ⊆ {�} for all languages
L1, L2 ∈ �∗.

Theorem 5.5. For a set of trajectoriesT , the following two assertions are equivalent:
(i) For all t1 ∈ (1m ��0n), t2 ∈ (1n ��0i), t3 ∈ (1j ��0m+n), i, j,m, n ∈ N,

m > 0 and t1 ∈ T implies t2 �∈ T , (a)

m > 0 and t1 ∈ T implies t3 �∈ T , (b)

t1 ∈ T and 0m ∈ T implies 0n ∈ T , (c)

t1 ∈ T and 0n ∈ T implies 0m ∈ T . (d)

(ii) �T is an associative operation, i.e. (L1�T L2)�T L3 = L1�T (L2�T L3) for all
L1, L2, L3 ⊆ �∗.

Proof. (i) Consider languagesL1, L2, L3 ⊆ �∗ and a set of trajectoriesT satisfying (i). Let
y ∈ ((L1�T L2)�T L3), then there aret1, t2 ∈ T , x1 ∈ L1, x2 ∈ L2 andx3 ∈ L3 such
that(x1�t1x2)�t2x3 = {y}.

Let t2 ∈ (1m ��0n) for somem, n�0, then t1 ∈ (1k ��0m+n) for somek�0. We
can deduce thatm = 0 and hence alsox3 = �, because form > 0, t2 ∈ T would
imply t1 /∈ T due to (b), a contradiction. Ast1 ∈ (1k ��0n) andt2 = 0n, due to (d) also
0k ∈ T and it follows that{y} = (x1�t1x2)�t2x3 = x1�t1x2 = x1�t1(x2�0k x3) ⊆
L1�T (L2�T L3).

54 L. Kari, P. Sosík / Theoretical Computer Science 332 (2005) 47–61

We have shown that(L1�T L2)�T L3 ⊆ L1�T (L2�T L3). Using analogous argu-
ments for (a) and (c) we can show also thatL1�T (L2�T L3) ⊆ (L1�T L2)�T L3)

which together assures the associativity of�T .
(ii) We show that violation of any of the conditions (a)–(d) would makeTnon-associative.

(a) Let there bet1, t2 ∈ T , t1 ∈ (1m ��0n), t2 ∈ (1n ��0i), for somem > 0, n, i�0.
Consider the wordw ∈ {a, b}∗, such thaty = �(t1), where�(0) = a, �(1) = b. Then

an+i�T (y�T b
m) = an+i�t2(y�t1b

m) = {ai}
and

(an+i�T y)�T b
m = ∅�T b

m = ∅,
asy contains at least oneb. Hence�T is not associative for the languages{an+i}, {y}
and{bm}.

(b) The proof is analogous to (a) and is left to the reader.
(c) Let there bet1 ∈ T , t1 ∈ (1m ��0n), and let further 0m ∈ T and 0n �∈ T . Then

an+m(�T a
m�T �)= an+m�t1(a

m�0m�) = {an},
(an+m�T a

m)�T �= an�T � = ∅,
and hence�T is non-associative.

(d) Analogous to (c).
�

Corollary 5.6. If �T is associative, then(L1�T L2)�T L3 = ∅ = L1�T (L2�T L3)

for all L1, L2 ⊆ �∗, L3 ⊆ �+.

Proof. As it is shown in the proof of Theorem5.5, part (i), if �T is associative and
(x1�T x2)�T x3 �= ∅ for somex1, x2, x3 ∈ �∗, thenx3 = �. Hence(x1�T x2)�T x3 = ∅
for all x1, x2 ∈ �∗, x3 ∈ �+, and thus also(L1�T L2)�T L3 = ∅ for all L1, L2 ⊆ �∗,
L3 ⊆ �+.

Furthermore, if�T is associative andL1�T (L2�T L3) �= ∅ for someL1, L2 ⊆ �∗,
L3 ⊆ �+, then(L1�T L2)�T L3 �= L1�T (L2�T L3), a contradiction, since(L1�T L2)

�T L3 = ∅ as we have just shown.�

6. Decision problems

In this section we study three elementary types of decision problems for language equa-
tions involving the shuffle and deletion on trajectories. They are formulated generally for
an arbitrary binary language operation♦ in accordance with[6].
Q0 : For given languagesL1, L2, R, R regular, isL1♦L2 = R?

Q1 : For given languagesL2, R,Rregular, does there existsX ⊆ �∗ such thatX♦L2 = R?

Q2 : For given languagesL1, R,Rregular, does there existsX ⊆ �∗ such thatL1♦X = R?

L. Kari, P. Sosík / Theoretical Computer Science 332 (2005) 47–61 55

The variant of problemQ0 for a singleton languageL2 = {w} is denoted byQw
0 . Similarly,

the variants of the problemsQ1 andQ2 for a singleton languageX = {w} are denoted by
Qw

1 andQw
2 , respectively.

6.1. The regular case

Let us focus on the case whenL1,L2 andTare all regular first. ThenL1��T L2,L1�T L2
are also regular languages by Lemmata4.3 and4.4. Hence the problemsQ0 andQw

0 are
decidable. The following theorem addressing the problemsQ1, Qw

1 andQ2 show that in
this case these are also decidable. The results were independently proven in[1,13].

Theorem 6.1. LetL1, L2, R be regular languages and T a regular set of trajectories. The
following problems are decidable:
(i) “Does there exist a solution X to the equationL1��T X = R (L1�T X = R)?”

(problemQ2);
(ii) “ Does there exist a solution X to the equationX ��T L2 = R (X�T L2 = R)?”

(problemQ1);
(iii) “ Does there exist a word w such thatw ��T L2 = R (w�T L2 = R)?” (problemQw

1).

As a consequence, the problemsQ1, Qw
1 andQ2 are decidable for all the binary word

operations mentioned in Sections2 and3, as they are special cases of��T or�T . For a
majority of them, however, this was already known[5–7].

The problemQw
2 is decidable for the operation��T due to the fact thatx ��T y =

y ���(T) x, where� is a coding such that�(0) = 1 and�(1) = 0. Hence it can be easily
reduced to the problemQw

1 . In case of the operation�T , however, such a reduction is not
possible and the decision status of the problemQw

2 remains open.

6.2. The context-free case

Now we address the problemsQ0, Q1, Q2 in the case when at least one of the involved
languages is context-free (and the remaining ones are regular).

Generally, for context-free languagesL1, L2, a regular languageR and a regular set of
trajectoriesT , the problemsQ1, Qw

1 , Q2 andQw
2 are all undecidable. We refer to[6,12]

where the undecidability of the mentioned problems is shown for the operations under
consideration, namely·,←−, ��, −→, −→lq, −→rq,�. The only exception is the case of
� for which the problemQw

1 is rather surprisingly decidable[12]. Further details can also
be found in[3].

Consider now the problemQ0 and assume just one ofL1 or L2 to be context free and
the other one regular. The former case (L1 context free) has been studied in[6,7], where
its undecidability is shown for the six above-mentioned operations (cf. Corollary6.9). The
latter case seems to be rather unexploited yet. In the rest of this section, we study both
these subcases of the problemQ0. For both of them we characterize precisely the class
of the trajectory sets (and hence the class of binary operations) for which these problems
are (un)decidable. In the following lemma, we call an integer setD ⊆ N regular iff it is a
length set of a regular language.

56 L. Kari, P. Sosík / Theoretical Computer Science 332 (2005) 47–61

Lemma 6.2. Consider an arbitrary but fixed infinite regular integer setD. DenoteRD =⋃
d∈D{0,1}d ,a regular languageover the alphabet{0,1}.Then the problem“DoesRD ⊆ L

hold true” is undecidable for a context-free languageL.

Proof.Denote by(U;V) = (u1, . . . , un; v1, . . . , vn), n�1, an instance of post correspon-
dence problem (PCP) over{0,1}, and letk = �log2 n� + 2. Consider the languages

LU = 1∗{(im)2 . . . (i1)20kui1 . . . uim |m > 0, 1� ij�n for all ij , 1�j�m},
LV = 1∗{(im)2 . . . (i1)20kvi1 . . . vim |m > 0, 1� ij�n for all ij , 1�j�m},

where(ij)2 denotes thek-digits binary representation ofij . Observe that each string(ij)2
starts with 0 and contains at least one 1, so that none of them equals to 0k. LetL = Lc

U ∪Lc
V .

One can easily check thatL is a context-free language and thatLc = LU ∩LV is empty iff
there is no solution(i1, . . . , im) of (U;V). We show thatRD ⊆ L holds true iff the instance
(U;V) of PCP has no solution.
• If (U;V) has no solution, thenL = �∗ andRD ⊆ L holds true.
• Assume that(U;V) has a solution(i1, . . . , im) for somem�1, and denoted by* =
|(im)2 . . . (i1)20kui1 . . . uim | the length of the shortest word inLc corresponding to that
solution. Then for eachd�* there exists a wordx ∈ Lc of the lengthd thanks to the
prefix 1∗ of the languageLc. Choose a numberd ∈ D such thatd�*, then there is a
wordx ∈ RD, |x| = d, such thatx ∈ Lc, hencex �∈ L andRD ⊆ L does not hold.
�
We address the variant of the problemQ0 when the left operand is context-free first. For

a set of trajectoriesT ⊆ V ∗ anda ∈ V , denoted by	a(T) ⊆ N the Parikh image ofT
restricted toa,

	a(T) = {|t |a | t ∈ T }.
Considering an alphabet�, denote furtherR0(T) = ⋃

d∈	0(T)
�d . Obviously, if T is

regular, then alsoR0(T) is a regular language which can be obtained fromT by a finite
substitution�(0) = �, �(1) = �.

Theorem 6.3. Let T be an arbitrary but fixed regular set of trajectories. The problem“ Is
L1��T L2 = R” is decidable for a context-free languageL1 and regular languagesL2, R
if and only if	0(T) is finite.

Proof. (i) Consider a regular set of trajectoriesT such that	0(T) is finite. Observe that
L1��T L2 = (L1∩R0(T))��T L2.AsR0(T) is an effectively constructible finite language,
the same holds forL1∩R0(T). Hence the languageL1��T L2 is regular and it is decidable
whether or notL1��T L2 = R holds for a regular languageR.

(ii) Assume that	0(T) is infinite. Consider� = {0,1} and letL ⊆ �∗ be an arbitrary
context-free language. Consider further the regular language

R = {0,1}∗ ��T c∗ = R0(T)��T c∗

over the alphabet{0,1, c}. We show that

L��T c∗ = R iff R0(T) ⊆ L. (5)

L. Kari, P. Sosík / Theoretical Computer Science 332 (2005) 47–61 57

(a) If R0(T) ⊆ L, then

L��T c∗ = (L ∩ R0(T))��T c∗ = R0(T)��T c∗ = R.

(b) If R0(T) �⊆ L, then there is aw ∈ R0(T) such thatw �∈ L. Then the setw ��T c∗ is
nonempty and for allw′ ∈ w ��T c∗,

w′ ∈ R0(T)��T c∗ andw′ /∈ L��T c∗,

hencew′ ∈ R − (L��T c∗) andL��T c∗ �= R.
Now, if we could decide whetherL��T c∗ = R holds or not, then we could due to (5) also
decide whetherR0(T) ⊆ L holds, which contradicts Lemma6.2. �

Theorem 6.4. Let T be an arbitrary but fixed regular set of trajectories. The problem“ Is
L1�T L2 = R” is decidable for a context-free languageL1 and regular languagesL2, R
if and only if the set	0(T) is finite.

Proof. (i) For a context-free languageL1 and a regular languageL2, the languageL1�T L2
is context-free due to the closure of the classCF under deletion on trajectories with regular
languages, see[1,13]. Moreover, we can write

L1�T L2 = (L1�T L2) ∩ R0(T).

Assuming that	0(T) is finite, the languageL1�T L2 is also finite and we can effectively
enumerate all its words. Hence the problem “IsL1�T L2 = R” is decidable.

(ii) Consider a regular set of trajectoriesT such that	0(T) is infinite. Consider further
� = {0,1} and letL ⊆ �∗ be an arbitrary context-free language. Let

L1=L��T c∗,
R = ({0,1}∗ ��T c∗)�T c

∗

be languages over the alphabet{0,1, c}. Observe that the definition of��T implies that both

L1 ⊆ R0(T)��T c∗, (6)

and

{0,1}∗ ��T c∗ = R0(T)��T c∗ (7)

hold. We show that

L1�T c
∗ = R iff R0(T) ⊆ L. (8)

(a) If R0(T) ⊆ L, then due to (6) and (7),

L1�T c
∗ = (L��T c∗)�T c

∗ = ((L ∩ R0(T))��T c∗)�T c
∗

= (R0(T)��T c∗)�T c
∗ = ({0,1}∗ ��T c∗)�T c

∗ = R.

58 L. Kari, P. Sosík / Theoretical Computer Science 332 (2005) 47–61

(b) If R0(T) �⊆ L, then there is aw ∈ R0(T) such thatw /∈ L. Then the setW =
(w ��T c∗)�T c

∗ is nonempty and for allw′ ∈ W ,

w′ ∈ (R0(T)��T c∗)�T c
∗ andw′ /∈ (L��T c∗)�T c

∗,

which can be due to (7) rewritten as

w′ ∈ R − (L1�T c
∗),

and henceL1�T c
∗ �= R.

Hence, as in the previous proof, decidability of “L1�T c
∗ = R” would imply decidability

of “R0(T) ⊆ L” which contradicts Lemma6.2. �

Now we address the case when the right operand is context-free. We obtain the analogous
result as in Theorem6.3for the case of��T operation.

Theorem 6.5. Let T be an arbitrary but fixed regular set of trajectories. The problem“ Is
L1��T L2 = R” is decidable for a context-free languageL2 and regular languagesL1, R
if and only if	1(T) = {|t |1 | t ∈ T } is finite.

Proof.Observe that��T = ��′�(T) and	1(T) = 	0(�(T)), where�(0) = 1 and�(1) =
0. Hence the statement follows by Theorem6.3. �

For the operation�T , however, the situation is different and needs a special attention
due to the nonsymmetry of this operation. We recall one more notation of theory of formal
languages. A languageT ⊆ V ∗ is letter-boundedif there is ann�0 andt1, . . . , tn ∈ V

such thatT ⊆ t∗1 t∗2 . . . t∗n .

Theorem 6.6. Let T be a regular set of trajectories which is not letter bounded. Then the
problem“ Is L1�T L2 = R” is undecidable for a context-free languageL2 and regular
languagesL1, R.

Proof. Observe first that ifT is not letter bounded, then the integer set{|t |01 | t ∈ T },
characterizing the numbers of occurrences of the string 01 inT , is infinite. Denote

R01(T) =
⋃
t∈T
{0,1}|t |01.

The reader can easily check thatR01(T) is a regular language. LetL be an arbitrary context-
free language over an alphabet{0,1}. Denote

L1=M(T · {c}),
L2= (L ∩ R01(T))�� c∗,
R =L1�T (R01(T)�� c∗),

L. Kari, P. Sosík / Theoretical Computer Science 332 (2005) 47–61 59

whereM = (Q, V ∪ c, {0,1, c}, q0, �, F) is a nondeterministic gsm,Q = F = {q0, q1},
and

�(q0,0) = (q1, {�}), �(q1,0) = (q1, {c}),
�(q0,1) = (q0, {c}), �(q1,1) = (q0, {a0, b1}),
�(q0, c) = (q0, {c}), �(q1, c) = (q1, {cc}).

One can observe that the languageL1 is produced fromT replacing all the substrings 01 by
eithera0 orb1, and all the remaining symbols byc in eacht ∈ T . We show that

L1�T L2 = R iff R01(T) ⊆ L. (9)

(i) If R01(T) ⊆ L, then we have

L1�T L2 = L1�T ((L ∩ R01(T))�� c∗) = L1�T (R01(T)�� c∗) = R.

(ii) If R01(T) �⊆ L, then there is aw ∈ R01(T) such thatw �∈ L. Observe that then there
is a wordw′ ∈ w �� c∗ such that after deletingw′ via�T fromL1, the only symbols
remaining in the result area’s, b’s andc’s, and moreovera’s andb’s are in the same
order as 0’s and 1’s inw.

In other words,w′′ ∈ L1�T w
′ holds for a wordw′′ ∈ �(w)�� c, where� :

{0,1}∗ −→ {a, b}∗ is a coding�(0) = a, �(1) = b. However, asw /∈ L, there is no
x ∈ L2 such thatw′′ ∈ L1�T x would hold. Hence, we can write that

w′′ ∈ L1�T (R01(T)��T c∗) and w′′ /∈ L1�T L2,

which can be rewritten as

w′′ ∈ R − (L1�T L2),

and henceL1�T L2 �= R.
Now, if we could decide whetherL1�T L2 = R holds or not, then we could due to (9) also
decide whetherR01(T) ⊆ L holds, which contradicts Lemma6.2. �

For a complementary statement, we benefit from the results given in[3].

Theorem 6.7. Let T be a letter-bounded regular set of trajectories. Let further L be a
context-free language and R a regular one. Then the languageR�T L is regular and
effectively constructible.

Proof. By Corollary 1 in[3], if T is regular and letter bounded, then for an arbitraryL the
languageR�T L is regular. Moreover, there is a finite number of effectively constructible
regular languagesR1, . . . , Rn such thatR�T L = Ri for somei, 1� i�n.

Supposing thatL is context-free, one can construct a context-free grammarG generating
R�T L, see Theorem 3.3 and Corollary 3.5 in[1] and their proofs. The algorithm computing

60 L. Kari, P. Sosík / Theoretical Computer Science 332 (2005) 47–61

R�T L can now be outlined as follows.
1. Construct the set of languagesR = {Ri |L(G) ⊆ Ri, 1� i�n}.
2. Choose anR ∈ R such thatR ⊆ Ri for all Ri ∈ R. Such anR must always exist as

L(G) = Ri for somei, 1� i�n.
3. OutputR.
�
Combining the above two results, we can give the following answer to the open instances

of the problemQ0 for the operation�T with the right argument being context-free:

Theorem 6.8. Let T be an arbitrary but fixed regular set of trajectories. The problem“ Is
L1�T L2 = R” is decidable for a context-free languageL2 and regular languagesL1, R
if and only if T is letter-bounded.

All the consequences of theorems in this section are summarized into a single table in
the following corollary. Previously unpublished results are typed in boldface.

Corollary 6.9. The following table holds true for the decision problemQ0 : “ IsL1♦L2 =
R?”. The symbol D stands for a decidable, U for an undecidable problem:

Operation♦
L1 L2 · ←−�� ��l ��bl −→

lq
−→

rq
−→���l�bl

REGREGD D D D D D D D D D D D
CF REGU U U U U U U U U U U U
REG CF U U U U U D D D D U U U

Acknowledgements

This research was supported by the Canada Research Chair Grant and NSERC Discovery
Grant to L.K., and also by the Grant Agency of Czech Republic, Grant No. 201/02/P079 to
P.S.

References

[1] M. Domaratzki, Deletion along trajectories, Tech. Report 2003-464, School of Computing, Queen’s
University, 2003; Theoret. Comput. Sci. 320 (2004) 293–313.

[2] M. Domaratzki, Splicing on routes versus shuffle and deletion along trajectories, Tech. Report 2003-471,
School of Computing, Queen’s University, 2003.

[3] M. Domaratzki, K. Salomaa, Decidability of trajectory-based equations, in: J. Fiala, V. Koubek, J. Kratochvíl
(Eds.), Mathematical Foundations of Computer Science 2004, Lecture Notes in Computer Science,Vol. 3153,
Springer, Berlin, 2004, pp. 723–734.

[4] M. Domaratzki, A. Mateescu, K. Salomaa, S. Yu, Deletion on trajectories and commutative closure, in: T.
Harju, J. Karhumaki (Eds.), WORDS’03: Fourth Internat. Conf. on Combinatorics on Words, TUCS General
Publication No. 27, August 2003, pp. 309–319.

[5] M. Ito, L. Kari, G. Thierrin, Shuffle and scattered deletion closure of languages, Theoret. Comput. Sci. 245
(2000) 115–133.

L. Kari, P. Sosík / Theoretical Computer Science 332 (2005) 47–61 61

[6] L. Kari, On insertion and deletion in formal languages, Ph.D. Thesis, University of Turku, Finland, 1991.
[7] L. Kari, On language equations with invertible operations, Theoret. Comput. Sci. 132 (1994) 129–150.
[8] L. Kari, S. Konstantinidis, Language equations, maximality and error detection, J. Comput. System Sci., to

appear.
[9] L. Kari, S. Konstantinidis, P. Sosík, Bond-free languages: formalizations, maximality and construction

methods, in: C. Feretti, G. Mauri, C. Zandron (Eds.), DNA 10, Tenth Internat. Meeting on DNA Computing,
Milano, University of Milano–Bicocca, 2004, pp. 16–25.

[10] L. Kari, S. Konstantinidis, P. Sosík, Preventing undesirable bonds between DNA codewords, in: C. Feretti,
G. Mauri, C. Zandron (Eds.), DNA 10, Tenth Internat. Meeting on DNA Computing, Milano, University of
Milano–Bicocca, 2004, pp. 375–384.

[11] L. Kari, S. Konstantinidis, P. Sosík, Substitutions on trajectories, in: J. Karhumäki, H. Maurer, G. P˘aun, G.
Rozenberg (Eds.), Theory is Forever. Essays Dedicated to A. Salomaa on the Occasion of His 70th Birthday,
Lecture Notes in Computer Science, Vol. 3113, Springer, Berlin, 2004, pp. 145–158.

[12] L. Kari, P. Sosík, On language equations with deletion, Bull. EATCS 83 (2004) 173–180.
[13] L. Kari, P. Sosík, Language deletion on trajectories, Dept. of Computer Science Tech. Report No. 606,

University of Western Ontario, London, 2003.
[14] E.L. Leiss, Language Equations, Springer, New York, 1999.
[15] C. Martin-Víde, A. Mateescu, G. Rozenberg, A. Salomaa, Contexts on trajectories, TUCS Tech. Report No.

214, Turku Centre for Computer Science, 1998.
[16] A. Mateescu, A. Salomaa, Nondeterministic trajectories, Formal and natural computing: essays dedicated to

Grzegorz Rozenberg, Lecture Notes in Computer Science, Vol. 2300, 2002, pp. 96–106.
[17] A. Mateescu, K. Salomaa, S. Yu, On fairness of manydimensional trajectories, J. Automata Languages and

Combin. 5 (2000) 145–157.
[18] A. Mateescu, G. Rozenberg, A. Salomaa, Shuffle on trajectories: syntactic constraints, TUCS Tech. Report

No. 41, Turku Centre for Computer Science, 1996; Theoret. Comput. Sci. 197 (1998) 1–56.
[19] G. Rozenberg, A. Salomaa (Eds.), Handbook of Formal Languages, Springer, Berlin, 1997.
[20] A. Salomaa, Theory of Automata, Pergamon Press, Oxford, 1969.

	Aspects of shuffle and deletion on trajectories
	Introduction
	Definitions and preliminaries
	Shuffle and deletion on trajectories
	Closure and characterization results
	Algebraic properties
	Decision problems
	The regular case
	The context-free case

	Acknowledgements
	References

